
Hierarchy Visualisator - documentation v0.1

 Lukasz P. Olech
e-mail: lukasz.piotr.olech@gmail.com

https://www.researchgate.net/profile/Lukasz_Olech2

July 10, 2016

1 Introduction

The proposed hierarchy visualisator was developed to provide a simple tool to
present hierarchically-structured data graphically together with some dedicated
measures. This tool should help in exploration and assessment of hierarchical
data (e.g. created by some algorithm [1]). By principle, it is devoted to vi-
sualisation of a structure called Object Cluster Hierarchy (former Hierarchy of
Clusters, Hierarchy of Groups) [1, 2, 3]. However, it can be successfully used
with any hierarchically-structured data (e.g. rooted trees), that is compliant
with a format described in 5. This format assumes that the hierarchy is built
using three basic elements: nodes, objects (instances), and parent-child re-
lations between nodes. Nodes represent groups, that must have names starting
with gen. and followed by dot-delimited numbers. These numbers indicate the
parent-child relations (position of nodes within the hierarchy). It is worth to
note that any node can have any number of children or none. Furthermore,
nodes contain any number of objects (data instances), including 0. Example
hierarchy is shown in 1. In that figure node gen.0.0 is empty (doesn’t contain
objects), and other nodes have a different number of objects. Node gen.0.1 has
two instances (G, H ), whereas gen.0.2 has four (I, J, K , L). In the exam-
ple, one instance belongs to only one node, but it can belong to any number
of nodes, similarly to fuzzy clustering. The number of children can also vary
between nodes, e.g. node gen.0 has 3 children, node gen.0.2 has one child, and
nodes gen.0.1, gen.0.0.0, gen.0.0.1, gen.0.2.0 don’t have any children.

The visualisator was designed to handle hierarchies with different structures.
It means that the software is capable of clearly visualising a high, narrow hier-
archy as well as a short, wide one. It can also handle a large number of nodes
and instances.

1

mailto:lukasz.piotr.olech@gmail.com
https://www.researchgate.net/profile/Lukasz_Olech2


A, B, C
gen.0

gen.0.0

G, H
gen.0.1

I, J, K, L
gen.0.2

D
gen.0.0.0

E, F
gen.0.0.1

M, N
gen.0.2.0

Figure 1: Example Object Cluster Hierarchy. Nodes are indicated by ellipses,
node names are written in italics to the north-east of every node. Node instances
are single capitalised letters written inside nodes. Arrows show the relations
between nodes.

2 Obtaining The Visualisator

The source code of the visualisator can be easily cloned from GitHub repository
https://github.com/toSterr/hierarchy_visualisator or downloaded from
the web page of Department of Computational Intelligence, Faculty of Computer
Science and Management, Wroćlaw University of Science and Technology, http:
//kio.pwr.edu.pl/. The GitHub repository contains source code, necessary
*.jar files, and this document. Visit the GitHub to obtain the latest version of
visualisator.

3 System Requirements

Visualisator was written and compiled with Java 8 SE, though it could be easily
downgraded to Java 6 SE. The program uses several external libraries:

• commons-cli-1.2.jar - Apache Commons CLI library (version 1.2), used
to handle command line with the program (https://commons.apache.
org/proper/commons-cli/),

• commons-lang3-3.4.jar - Apache Commons Lang 3.0 library (version
3.4), used to handle some ArrayUtils operations (https://commons.
apache.org/proper/commons-lang/),

• commons-math3-3.6.jar - Apache Commons Math 3.0 library (version
3.6), used to handle several mathematical operations (https://commons.

2

https://github.com/toSterr/hierarchy_visualisator
http://kio.pwr.edu.pl/
http://kio.pwr.edu.pl/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-math/


apache.org/proper/commons-math/),

• prefuse-beta-20071021.jar - Prefuse Visualisation Toolkit, the latest
non-GitHub version downloaded from Prefuse web page, it was used in
visualisation of the nodes of the hierarchy (http://prefuse.org/),

• utils.prefuse.histogram package in source code - it is an implementa-
tion of histograms in prefuse library, made by Kaitlin Duck Sherwood and
Jeffrey Heer (http://blog.webfoot.com/2007/08/01/robobait-prefuse-histograms/).
Their code was further modified, adjusted and bugfixed in order to suit
my needs.

All the libraries are included in the GitHub project.

4 Running The Visualisator

The visualisator is compiled as runnable *.jar file, named hierarchy visualisator.jar.
This software is designed to be used by a command line. Its execution can be
customised by a series of options, most of which have default values assigned.
The purpose of default values is to provide a way of running the program quickly,
with the necessity to specify only a minimal set of options. Additionally one
should note that all of the options can be provided with both short (e.g. -h)
and long (e.g. --help) form.

In order to list all command line options one should execute the hierarchy visualisator.jar

without any option or with -h (alternative --help) option, as shown below:

java -jar hierarchy visualisator.jar -h

The output, by the time of creating that documentation will be as follows:

usage: java -jar hierarchy_visualisator.jar

-b,--bins-number <number of bins> Number of each histogram

bins. Default: 100.

-bg,--background-color <color> Background color of every

output image. Possible

values: {green, black, blue,

lightBlue, yellow, cyan,

lightGray, gray, darkGray,

magenta, orange, pink, red,

white}. Default: white.

-c,--class-attribute Provided input file contains

also a ground truth class

assignment. Class attribute

will be omitted by this

program. Assumed that class

is in the second column

3

https://commons.apache.org/proper/commons-math/
http://prefuse.org/
http://blog.webfoot.com/2007/08/01/robobait-prefuse-histograms/


(attribute) in the input

file.

-cg,--child-group-color <color> Color whit which all Child

Groups (successors) will be

painted on the output

images. Possible values:

{green, black, blue,

lightBlue, yellow, cyan,

lightGray, gray, darkGray,

magenta, orange, pink, red,

white}. Default: green.

-da,--display-all Display all points on the

output images, so the other

non-child groups (e.g.

siblings and all parent

groups) are also displayed.

-h,--help Prints this message.

-ht,--images-height <pixel number> Height of the instances

visualisation part (center

image) on the output images.

Provided in pixels. Default:

600 px.

-i,--input <file path> Path to file with input

data. It should be a

properly formatted *.csv

file.

-in,--instance-name Provided input file contains

also a unique name of every

instance, which will be

omitted by this program.

Assumed that instance names

are in the third column

(attribute) in input file

when the class attribute is

also provided or in the

second column otherwise.

-lg,--current-level-group-color <color> Color which indicates

current Level Group on the

output images. Possible

values: {green, black, blue,

lightBlue, yellow, cyan,

lightGray, gray, darkGray,

magenta, orange, pink, red,

white}. Default: red.

-o,--output <directory path> Path where output *.PNG

files showing every

4



hierarchy level and a *.csv

file with

hierarchystatistics will be

stored.

-og,--other-group-color <color> Color with which all Other

Groups (e.g. siblings) will

be painted on the output

images. Possible values:

{green, black, blue,

lightBlue, yellow, cyan,

lightGray, gray, darkGray,

magenta, orange, pink, red,

white}. Default: lightGray.

To display these points, the

-da flag must be set.

-pa,--parent-ancestors-group-color <color> Color with which current

Parent group all ancestors

will be painted on the

output images. Possible

values: {green, black, blue,

lightBlue, yellow, cyan,

lightGray, gray, darkGray,

magenta, orange, pink, red,

white}. Default: lightBlue.

To display these points, the

-da flag must be set.

-pg,--parent-group-color <color> Color with which direct

Parent Group (immediate

ancestor) will be painted on

the output images. Possible

values: {green, black, blue,

lightBlue, yellow, cyan,

lightGray, gray, darkGray,

magenta, orange, pink, red,

white}. Default: blue. To

display these points, the

-da flag must be set.

-ps,--point-scale <real number> Scaling factor (floating

point number) of points

drawn on images. Default:

1.0 (no scaling).

-sv,--skip-visualisation Program will skip printing

the output visualisations

(images). Only hierarchy

statistics file will be

produced.

5



-w,--images-width <pixel number> Width of the instances

visualisation part (center

image) on the outputimages.

Provided in pixels. Default:

800 px.

So, given the above description, the simplest visualisator invocation would be:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o output/folder/path

The program is highly customizable, so one can change:

• width and/or height of center part of output images (that part is showing
the instances in feature space), in order to have 100px width and 200px
of height:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o

output/folder/path -w 100 -ht 200

• colors of both: nodes and points in images, in order to change all possible
colors:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o

output/folder/path -cg orange -lg black -og pink -pa cyan -pg

yellow -da

remember to add -da flag for -pg, -pa, -og colors to be effective

• instances point size on output image, if one would like to have it twice
bigger than default:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o

output/folder/path -ps 2

• number of histogram bins, in order to have 200 bins:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o

output/folder/path -b 200

• or combine options

java -jar hierarchy visualisator.jar -i input/file/path.csv -o

output/folder/path -w 100 -ht 200 -b 200 -pa cyan -pg yellow -da

There are more options that will be covered in the following sections.

6



5 Input File Format

The input file should be a properly formatted *.csv file. The comma sepa-
rated file (*.csv) uses a semicolon (’;’) as a separator and does not require
any header to be provided beforehand. Every row is assumed to represent one
data instance, where first column has to indicate group to which the instance
belongs, let’s call it assign-class column. In the minimal input file, the assign-
class column should be followed by at least two feature values. There is no
upper limit on the number of feature values, but once decided, all rows should
have the same number of dimensions.

The assign-class column should be in the form of gen.X, where the X are the
integer numbers delimited by a dot (”.”). These numbers indicate the position
of a node within the hierarchy, where gen.0 is the root node, gen.0.0 is its
left-most child, and gen.0.1 it the root’s child that is on the right of gen.0.0.
See the example in 1. The groups in the assign-class column should be provided
in DSF1 (depth first search) order.

Optionally, the assign-class column can be followed by another class assignment
- the ground-truth-class column. This assignment may indicate the external true
assignment of instances to groups and the assign-class column is the assignment
produced by some external classifier. The format of these group names should
be the same as for the assign-class column, with the exception that the ground-
truth-class column values do not need to be provided in DFS order (because this
assignment depends on the instance not on the assign-class column). This data
can be used in order to produce some external validation measures, e.g. [3]. In
the current release this column is not used. In order to accurately parse input
file with assign-class column one should run the program with -c flag:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o output/folder/path

-c

Furthermore, the the ground-truth-class column (or assign-class column if
-c flag is not specified) can be followed by instance-name column. The purpose
of this column is to give a name to every instance. Currently it is not used by
the visualisator. This column’s values can be any text. To properly parse the
instance-name column, the -in flag should be provided:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o output/folder/path

-c -in

The summary of invocation flags and sample input file content is provided in 1.

1https://en.wikipedia.org/wiki/Depth-first_search

7

https://en.wikipedia.org/wiki/Depth-first_search


Execution flags (none) -c -c -in -in

File content
gen.0;0.5;0.7 gen.0;gen.1.2;0.5;0.7 gen.0;gen.1.2;first1;0.5;0.7 gen.0;first1;0.5;0.7
gen.0.1;1.2;4.0 gen.0.1;gen.0.1;1.2;4.0 gen.0.1;gen.0.1;second2;1.2;4.0 gen.0.1;second2;1.2;4.0
gen.0.3;1.2;4.0 gen.0.3;gen.0.3.1;1.2;4.0 gen.0.3;gen.0.3.1;third3;1.2;4.0 gen.0.3;third3;1.2;4.0

Table 1: Exemple input file content, depending on the input flags

Figure 2: Examole output form visualisator.

6 Program Output

The hierarchy visualisator puts its results into the output folder. The results
consist of *.png images and *.csv file. The number of produced images equals
the number of groups in the input file because for every group one image is
created. The exa mple image is shown in 2. The output image is divided into
four sections. On the left, there is the visualisation of hierarchy structure, as
described in 6.1. On the right of the hierarchy structure is visualisation of
distribution of instances in a feature space 6.2. On the right side and below the
visualisation of distribution of instances are histograms of those instances 6.3.
On the bottom right, the simple level statistics are printed.

8



6.1 Hierarchy Structure

Hierarchy structure is drawn in a way to visualise all nodes, because of this the
size of nodes is calculated dynamically. Every node has a color regarding its
position and the image that is being analysed.

Using the default parameters provided in 4:

• Currently investigated node is in red color,

• Parent of current color is in blue color,

• All predecessors of the parent node described in the previous bullet are
light blue,

• All children (direct and indirect) are green.

This view helps with navigation over images and shows how the hierarchy is
structured.

6.2 Instances

In the centre of every image, a visualisation of instances is presented. Only the
first two features are displayed. The color of instances is similar to these
listed in 6.1. The size of every point can be altered using -s option.

6.3 Histograms

Based on the distribution of points in the feature space, the two histograms
are drawn - each for corresponding dimension in 6.2. The number of bins can
be changed by the -b flag. The purpose of these histograms and instances
visualisation described in 6.2 is to give better intuition about generated points.

6.4 Measures

Measures contain a variety of data statistics. There are two places where
the measures are printed. The concise form is printed directly on the out-
put images (the bottom right corner). The longer (complete) version is in
NAME hieraryStatistics.csv file that is located in output folder. The NAME

is the name of used input file. If one is interested in the statistics only, there is
a possibility to skip generation of images by using the -sv flag:

java -jar hierarchy visualisator.jar -i input/file/path.csv -o output/folder/path

-sv

Using this flag the program execution time is much shorter.

The NAME hieraryStatistics.csv consists of following measures (provided in
order of occurrence):

9



• Total num of instances – the overall number of instances in the whole
hierarchy,

• Avg num of children per node – the number of children divided by the
number of nodes,

• Sample stdev num of children per node – standard (sample) devia-
tion of the Avg num of children per node,

• Avg num of children per INTERNAL node – similarly as for Avg num

of children per node, but calculated only for nodes that have at least
one child,

• Sample stdev num of children per INTERNAL node – similar as Sample
stdev num of children per node,

• Avg num of children per INTERNAL node with MIN BRANCHING FACTOR

2 – similarly as for Avg num of children per node, but calculated only
for nodes that have at least two children,

• Sample stdev num of children per INTERNAL node with MIN BRANCHING

FACTOR 2 – similar as Sample stdev num of children per node,

• Avg num of instances per node – the number of instances divided by
the number of nodes,

• Sample stdev num of instances per node – sample standard devia-
tion of above-mentioned statistic,

• Hierarchy height – the longest path from root to leaf node,

• Avg hierarchy width – the number of nodes on every hierarchy level,
divided by the number of levels,

• Sample stdev hierarchy width – sample standard deviation of above-
mentioned statistic,

• Number of nodes – total number of nodes,

• Number of INTERNAL nodes – total number of nodes that have at least
one child node,

• Number of INTERNAL nodes with MIN BRANCHING FACTOR 2 – total num-
ber of nodes that have at least two children,

• Number of leaves – total number of leaves in the hierarchy,

• Avg path length – averaged length of paths from root to every leaf,

• Sample stdev path length – sample standard deviation of above-mentioned
statistic,

10



• Total number of points – repetition of this statistic, the purpose is to
ease the interpretation of the histogram mentioned below.

• Next there are several statistics presented as histogram, they should be
read in columns:

– Level – level number (histogram’s bin),

– No Inst – the number of instances on a particular level,

– % Inst – the percentage value of the previous statistic,

– Avg. No of Children per node – similar to Avg num of children

per node but divided further into hierarchy levels,

– Stdev – sample standard deviation of above-mentioned statistic,

– Hierarchy width – number of nodes on a particular level,

– No of leaves – number of leaves on a particular level (each level
nodes count),

• Branching factor histogram – this is a histogram represented in the
next two rows, where first row indicates the number of children for a node,
and the second row counts nodes having a specific number of children.

• Each group’s empirically computed parameters of Gauss distribution:

– Node – name of group,

– Mean vector – centroid of that group,

– Covariance matrix – empirically computed covariance matrix.

References

[1]  Lukasz P. Olech and Mariusz Paradowski. Proceedings of the 9th Interna-
tional Conference on Computer Recognition Systems CORES 2015, chapter
Hierarchical Gaussian Mixture Model with Objects Attached to Terminal
and Non-terminal Dendrogram Nodes, pages 191–201. Springer Interna-
tional Publishing, Cham, 2016.

[2] Michal Spytkowski and Halina Kwasnicka. Hierarchical clustering through
bayesian inference. In Ngoc Thanh Nguyen, Kiem Hoang, and Piotr Je-
drzejowicz, editors, ICCCI (1), volume 7653 of Lecture Notes in Computer
Science, pages 515–524. Springer, 2012.

[3] Michal Spytkowski, P. Olech, Lukasz, and Halina Kwasnicka. Hierarchy of
groups evaluation using different f-score variants. In Ngoc Thanh Nguyen,
Bogdan Trawiski, H. Fujita, and T.-P Hong, editors, Intelligent Information
and Database Systems, volume 9621 of Lecture Notes in Computer Science,
pages –. Springer-Verlag Berlin Heidelber, 2016.

11


	Introduction
	Obtaining The Visualisator
	System Requirements
	Running The Visualisator
	Input File Format
	Program Output
	Hierarchy Structure
	Instances
	Histograms
	Measures


